mb.add_model(name, model, ...)
Adds a model to the model registry. The registry is updated with the new model if a an entry with that name already exists.
Multiple models
If you're adding multiple models to the registry, use mb.add_models instead.
Parameters
name
:str
The name of the model in the registry. Models are stored by paths, like files, so you can use forward slashes for organization.model
:Optional[Any]
The model object to store in the registry. A Python variable, not a path to a.pkl
file. Required unless usingfile=
.file
:Optional[str]
The filepath where the model is stored. Use this for file-based models instead ofmodel=
metrics
:Optional[Dict[str, Any]]
Optional, the metrics to associate with this model. Metrics must be JSON-serializable withstr
values for keys.serializer
:Optional["cloudpickle"]
Optional, specify a different serializer to use. Default value isNone
which uses thepickle
module. Learn mode
Returns
No value is returned. A success status message is printed if the command is successful.
Examples
Adding a model
mb.add_model("example_model", my_model)
Adding a model in a "finance" directory
mb.add_model("finance/example_model", my_model)
Adding a model stored as a file
mb.add_model("my_model", file="path/to/model.gguf")
Adding a model with metrics
mb.add_model("example_model", model=my_model, metrics={ "precision": 0.95 })
Storing a model with cloudpickle
mb.add_model("my_model", model=my_model, serializer="cloudpickle")